首个恒星级黑洞被精确测量,研究者苟利军揭秘如何测黑洞(2)

2021-02-20 16:59     新京报

释疑二:如何测量黑洞的距离和质量?

苟利军介绍,2011年,他和合作者就首次尝试对这颗黑洞的性质进行精确测量。当时得出的结果是这个黑洞系统与地球的距离为6067光年,质量为14.8倍的太阳质量,并且发现黑洞的视界面在以72%的光速转动。

2013年,欧洲航空局的盖亚(GAIA)卫星发射升空,计划对银河系内的10亿颗恒星的距离进行精确测量。其对天鹅座X1的测量结果显示,它与地球距离大约为7100光年。

两次测量结果差异较大,所以科研人员进行第三次测量进行验证。此次,澳大利亚柯廷大学的米勒-琼斯教授带领的团队主要完成了对天鹅座X1黑洞距离的测量,最终得到天鹅座X1黑洞的最新距离为7240光年。

在此基础上,合作团队重新分析光学数据,发现黑洞质量增加了将近50%,为21倍的太阳质量。这是人类目前发现的唯一一个黑洞质量超过20倍太阳质量的黑洞X射线双星系统。

苟利军介绍,三次测量距离时使用的都是三角视差方法。通常而言,是指通过两个不同位置,测量某个天体相对于遥远背景的视线角度变化,然后在已知两个位置距离的情况下,就可以通过求解三角函数得到测量者到物体之间的距离。

由于距离越远,物体对于视线变化所张开的角度变化就越小,会导致测量难度不断加大。因此这种方法多应用于一些临近天体的距离测量中。

之所以能够利用地面上的望远镜对于天鹅座X1的距离进行测量,也是因为分布于美国10个地点的望远镜,能够通过干涉方式形成一个直径几千公里的虚拟望远镜,从而可以分辨出微小的角度变化。这种技术和2017年拍摄黑洞照片的望远镜所使用的技术一致。

苟利军说,测量质量所使用的是动力学方法。动力学方法是通过测量伴星围绕黑洞运动的速度和伴星与黑洞之间的轨道半径来推断质量。"比如测量地球质量,我们通过地球周围行星月亮的运动速度、轨道半径等,带入开普勒定律,就能确定它的中心天体地球的质量。"