学霸和学渣的大脑,有什么不同?(5)

2021-10-19 17:19     互联网

最近,一些研究团队证实,动作电位(沿轴突传递的神经脉冲)能促使髓鞘在轴突的裸露区域上的形成。2014年,美国斯坦福大学的米歇尔·蒙耶(Michelle Monje)的研究团队表示,光遗传学刺激(使用激光激活神经元)能够促使小鼠大脑中髓鞘的形成。同年,英国伦敦大学学院的威廉·理查森(William Richardson)的研究团队证实,如果阻止小鼠大脑中新的髓磷脂的形成,小鼠在学习如何在跑轮上跑步时,效率就会降低。英国爱丁堡大学的戴维·莱昂斯(David Lyons)和美国科罗拉多大学丹佛分校布的鲁斯·阿佩尔(Bruce Appel)的研究团队,也在使用共聚焦显微镜观察活体斑马鱼内髓磷脂的形成过程。他们发现,当抑制轴突释放含有神经递质的囊泡时,最外面的几层髓鞘往往会脱落,少突胶质细胞也会停止形成髓鞘。

最近,通过与加藤大辅(Daisuke Kato)和其他日本科学家的合作,我们弄清楚了髓磷脂是通过什么样的机制,让轴突上的多种电信号同时到达运动皮层(控制运动的大脑区域),来促进大脑的学习。在研究中,我们通过基因改造,让一些小鼠先天缺乏髓鞘,然后让这些小鼠拉动杠杆以获得奖励。我们发现,学习这一任务可以促进小鼠运动皮层中髓鞘的形成。

通过电极记录小鼠大脑中的神经脉冲后,我们发现,在小鼠运动皮层中,如果髓鞘的形成受到阻碍,不同轴突上的动作电位就难以在同一时间传递到“中继站点”。然后,我们使用光遗传学技术,使小鼠的神经元在适当的时间被激活,增强神经脉冲在时间上的同步性。在这种情况下,即便髓鞘的形成受到障碍,但小鼠仍然熟练完成了学习任务。这种侵入性较低的大脑刺激技术,也许能有效治疗由髓鞘受损引起的神经和心理疾病。

尽管取得了这些进展,但这并不是说,促进轴突髓鞘的形成就足以让动物完成新的学习任务。原因在于,仅让神经脉冲以更快的速度传播,并不能保证让它们在同一时间到达神经网络中的关键“站点”,还必须有一种方法能减慢过早到达“中继站点”的神经脉冲的速度。

我们必须通过可控的方式,让轴突上已经形成的髓磷脂变厚或变薄,以加快或减慢信号的传递。在我们的研究之前,除了疾病导致的髓鞘变薄之外,还没有其他研究提出过如何让髓鞘变薄,以减慢神经脉冲的传递速度。而我们最新的研究发现,另一种神经胶质细胞与髓鞘的改变密切相关。

频道热点
更多
今日关注
更多